The Effect of Land-cover Changes on Lag Time in the Banklick Creek Watershed, KY Katelyn Toebbe University of Louisville Department of Geography and Geosciences

Introduction

Urbanization in a watershed is known to affect the entire balance of the water network, often resulting in more frequent and severe flooding. In a natural environment, precipitation is: intercepted by vegetation and evapotranspired back into the atmosphere, stored in the soil, transported as overland flow to low order streams, or percolated down to the water table (Yang et al., 2009). The prevalence of impervious surfaces in urban areas retards penetration and infiltration and reduces friction and meandering, drastically increasing flow velocity and erosive force. The result is an increased amount of runoff, moving faster, meaning a shorter lag time to discharge, manifesting in less groundwater recharge and higher flood peaks (Wheater and Evans, 2009). Another result of urban development is the destruction of first and second order streams, which also contributes to flooding (Brilly et al. 2006).

The effects of urbanization on flooding have been widely investigated in the scientific community because in an urban environment, flooding is a threat to citizens and infrastructure (Yang et al. 2010). In a 2010 study, a team from Purdue University led by Gouxian Yang investigated the response of watersheds to urbanization in the White River Basin, Indiana. They made land use classes using unsupervised classification of Landsat thematic mapper (TM) and used them in an altered Anderson level-2 classification scheme. They estimated high density urban pixels as 90 percent impervious area, and 35 percent low density. These are according to the Environmental Protection Agency (EPA)'s definition, that 80-100% of highly urbanized areas are impervious, and 20-49% of low-density urbanization is impervious (Yang et al. 2010). This helps account for the error introduced from a large pixel size, which may capture mixed land-cover types.

Methodology

a.) Study Area

The Banklick Creek watershed is a 58-square mile basin covering much of Kenton County and a small portion of Boone County, Kentucky. The creek itself is 19.2 miles long and drains northeast into the

Licking River. It has six main tributaries including: Brushy Fork, Bullock Pen Creek, Fowler Creek, Holds Branch, Horse Branch, and Wolf Pen Branch. An active USGS gauging station, number 03254550, is present on the stream in the city of Erlanger, capturing 58% of the drainage area (Limnotech 2009). b.) Data

Discharge data from USGS station # 03254550 dates back to 1999, and was obtained in fifteenminute increments for a ten-year study period from 2000 to 2010. Precipitation data was received from the National Climatic Data Center (NCDC) for station number 151855, the Covington, KY station at the Greater Cincinnati Airport, located approximately 3.5 miles from the Banklick Creek basin. The precipitation data from 2000 til May of 2010 was obtained. Since there was not a full year's record for 2010, the decision was made to narrow the study period into four year increments, with study years of 2001, 2005, and 2009 to capture the trend of the 2000 decade. The three largest discharge events in each study year were identified and averaged into hourly records so that the two data types were in equal units.

To quantify the urban growth in the Banklick Creek watershed over the last ten years, Landsat 4-5 Thematic Mapper (TM) images were obtained from 2000 to 2010 and classified. All images were taken in August and September. This ensures consistency of season, but also allows for enough selection for high-quality images (ranked 9 by NASA) with low (less than 30 %) cloud cover. The images were ordered using the United States Geological Survey (USGS) Global Visualizer (GloVis). Landsat bands 1 through 5 were stacked in ENVI+IDL by date and loaded into an RGB display using bands 4, 3, 2, creating a false-color image. The displays were then enhanced by using a Gaussian stretch tool to apply a normal distribution to the pixel values. This minimizes the possibility of variation between the images due to variations in the image capture, such as time of day, etc.

An unsupervised iterative self-organizing data analysis (ISODATA) classification was run to gain basic knowledge of the land cover classes in the study area. A maximum likelihood supervised classification was then performed in ENVI 4.8 to create major land cover classes in the area. Six classes were used, including forest, agriculture/grass, highly impervious, partial impervious, water, and bare ground. The forest class captures bushy dense vegetation and the agriculture class includes not only cropland but all low-lying less dense vegetation, such as lawns. Highly impervious areas are areas of definite impermeability, such as warehouses, city centers, and airports. The "partial impervious" class includes areas of mixed pixel values characteristic of suburban development, a mix of impermeability and grass. The water class was needed to capture water bodies in the area. "Bare Ground" is a necessary class due to its unique reflectance; it is important to define it separately from impervious surfaces. Pixel values between years may fluctuate between agriculture and bare ground due to weather conditions.

Change detection was then run in four-year increments, 2001-2005, and 2005 to 2010. Unfortunately, every Landsat image taken of the study area for the summer months in 2009 has detrimental cloud cover, making accurate analysis difficult. The decision was made to use 2010 imagery instead. This allows for capture of the land-cover change, although impervious surface values may be slightly over-estimated because of this.

Next, a watershed boundary shapefile was imported into ENVI 4.8 to limit analysis to the study area alone. Change detection statistics in ENVI 4.8 were then run to provide a detailed summary of the changes of land cover classes between each set of images, showing the changes from each class to another. In accordance with EPA guidelines, anything classified as "highly impervious" in this study is considered 95% impervious cover and "partially impervious" is considered 40% impervious.

		Peak Precipitation	Peak Discharge	Lag Time
	#1- 3870 cfs	10/24/01 3:00	10/24/01 7:00	4 hrs
2001 Events	#2- 2650 cfs	7/18/01 0:00	7/18/01 4:00	4 hrs
	#3- 2100 cfs	6/6/01 15:00	6/6/01 18:00	3 hrs
	#1- 5360 cfs	3/28/05 3:00	3/28/05 4:00	1 hr
2005 Events	#2- 5010 cfs	11/15/05 4:00	11/15/05 7:00	3 hrs
	#3- 3830 cfs	1/3/05 9:00	1/3/05 11:00	2 hrs
	#1- 9490 cfs	7/30/09 22:00	7/31/09 2:00	4 hrs
2009 Events	#2- 1860 cfs	10/9/09 0:00	10/9/09 6:00	6 hrs
	#3- 1810 cfs	2/27/09 3:00	2/27/09 7:00	4 hrs

Table 1. Precipitation, Discharge, and Lag Time, Top 3 discharge events for 2001, 2005, and 2009

Image Classification Results:

Figure 1. August 2001 Classified Image

Figure 2. August 2005 Classified Image

Figure 3. September 2010 Classified Image

Area (Square Meters) Change from 2001 to 2005									
	Forest [Green]	Highly Impervious [Red]		Partial Impervious [Magenta]		Water [Blue]			
	2779 points	2248 points			2475 points	2077 points			
Unclassified	Ô	0			0	Ô			
Forest [Green] 2678 points	25577100	9900			2870100	0			
Highly Impervious [Red] 2163 points	942300	942300 4554000			2322900	54900			
Water [Blue] 2718 points	0 9000			900	124200				
Agriculture/Grass [Yellow] 3243 points	1571400 59400			1233900	900				
Bare Ground [Sienna] 330 points	486000	486000 3798		3604500		0			
Suburban [Magenta] 2084 points	7304400		2130300	35753400		2700			
Class Total;	35881200		7142400	45785700		182700			
Class Changes:	10304100 2		2588400		10032300	58500			
Image Difference:	-5145300		3815100		25101000	-47700			
	Agriculture/Grass [Yellow]		Bare Ground	[Sienna]	Row Total	Class Total			
	2074 points		1473 po	ints					
Unclassified	0		0		0	83781000			
Forest [Green] 2678 points	318600		1960200		30735900	30735900			
Highly Impervious [Red] 2163 points	1416600		1666800		10957500	10957500			
Water [Blue] 2718 points	0		900		135000	135000			
Agriculture/Grass [Yellow] 3243 points	8680500		3979800		15525900	15525900			
Bare Ground [Sienna] 330 points	10481400		7772400		22724100	22724100			
Suburban [Magenta] 2084 points	6384600		19311300		70886700	70886700			
Class Total;	27281700		34691400		0	0			
Class Changes:	18601200		26919000		0	0			
Image Difference:	-11755800		-11967300		0	0			

Table 2. Change Detection Results from 2001 and 2005 images, square meters

Area (Square Meters) Change from 2005 to 2010								
	Forest [Green] Hig		mpervious [Red]	Partial Impervious [Magenta]		Water [Blue]		
	2678 points	2	163 points		2084 points	2718 points		
Forest [Green] 2198 points	20844900	4500		2707200		0		
Water [Blue] 2027 points	0	24300		0		124200		
Highly Impervious [Red] 2154 points	393300	6645600		3361500		8100		
Partial Impervious [Magenta] 2087 points	8272800	3031200		57904200		2700		
Agricultural [Yellow] 2234 points	1062900	345600		5649300		0		
Bare Ground [Sienna] 2575 points	162000 9		906300		1264500	0		
Class Total	30735900	10957500		70886700		135000		
Class Changes	9891000	4311900		12982500		10800		
Image Difference	-6540300		1720800		9758700	14400		
	Agriculture/Grass [Y	Yellow]	Bare Ground [S	ienna]	Row Total	Class Total		
	3243 points		330 points					
Forest [Green] 2198 points62		15300		24195600		24195600		
Water [Blue] 2027 points	900		0		149400	149400		
Highly Impervious [Red] 2154 points	919800		1350000		12678300	12678300		
Partial Impervious [Magenta] 2087 points	087 points 4982400		6452100		80645400	80645400		
Agricultural [Yellow] 2234 points	8385300		12610800		28053900	28053900		
Bare Ground [Sienna] 2575 points613800			2295900		5242500	5242500		
Class Total 15525900			22724100		0	0		
Class Changes	7140600		20428200		0	0		
Image Difference	12528000		-17481600		0	0		

Table 3. Change Detection Results from 2005 and 2010 images, square meters

Lag time was measured as clearly increasing between 2001 and 2005 (Table 1), which shows the effect of urban development in the headwaters seen in the Figure 3, and not Figure 2. There is a 13,664,745 m² increase in impervious surface area measured in this time. This area is calculated by multiplying the highly impervious surface area by 95% and adding it with 40% of the partially impervious area in Table 2. The increases in impervious land cover types are accompanied by a decrease in forest and agriculture or bare ground, which further confirms the development trends.

In 2005, many neighborhoods were under construction. These areas of packed ground and gravel were classified as highly impervious (red). Much of these clusters are then classified as partially impervious in the 2010 image (Figure 3). After construction, these sites were regraded and seeded, and lawns and vegetation were established. This is why even though there is still an increase in impervious surface area from 2005 to 2010 of 5,538,240 m², lag time is seen to go back up. The results suggest that even though there is significant development between 2001 and 2009, since the land has had time to allow growth of vegetation, the water is slowed back down to a longer lag time between precipitation peaks and discharge peaks. The 2005 image had a much larger "bare ground" class due to a drought that year, with the area only receiving 38.8 inches of precipitation. This creates a false increase in agriculture between 2005 and 2010 with the decrease in bare ground as the vegetation in these areas was reinstated.

Conclusions

The results of this study clearly show the effect that land cover has on lag time between precipitation and discharge peaks. Urbanization reduces infiltration and speeds up runoff, effectively reducing lag time, increasing the frequency and magnitude of flooding. The later results, however, show how with some time for vegetation to develop, lag time can be brought back up. Further studies beneficial to the understanding of this watershed could include higher resolution data, both in imagery and shorterincrement precipitation and discharge data. Hydrologic modeling such as HEC-HMS or the EPA's SWMM model could also be used to project future and model past conditions.

References:

http://factfinder.census.gov

http://www.fs.fed.us/r8/boone/conditions/clim.shtml

Banklick Watershed Council. 2005. The Banklick Watershed Action Plan Comprehensive Approach to Watershed Management. URL: http://www.banklick.org/Banklick_Watershed_Plan_Nov_2005.pdf

- Brilly, M., Rusjan, S. and A. Vidmar. 2006. Monitoring the Impact of Urbanisation on the Glinscica Stream. *Physics and Chemistry of the Earth* 31: 1089-1096
- Drummond, M.A. and T. R. Loveland. 2010. Land-use Pressure and a Transition to Forest-cover Loss in the Eastern United States. *Bioscience* 60 (4): 286-298.
- Limnotech. 2009. Banklick Creek Watershed Characterization Report. Prepared for Sanitation District No. 1 of Northern Kentucky
- United Nations. 1999. The State of World Population 1999—6 Billion: A Time for Choices. New York: United Nations Population Fund.
- Wheater, H. and E. Evans. 2009. Land use, water management and future flood risk. *Land Use Policy* 26 (1): S251-S264
- Xian, G. and M. Crane. 2005. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. *Remote Sensing of Environment* 97 (2): 203-215.
- Yang, G., Bowling, L.C., Cherkauer, K. A., Pijanowski, B.C., and D. Niyogi. 2009. Hydro climatic Response of Watersheds to Urban Intensity: An Observational and Modeling-Based Analysis for the White River Basin, Indiana. *Journal of Hydrometeorology* 11: 122-138